Why teaching functional programming to undergraduates at CUNY is important

Evan Misshula

2018-03-28
Plan for the talk

1. Why Functional Programming is intellectually interesting
Plan for the talk

1. Why Functional Programming is intellectually interesting (particularly with Haskell)
Plan for the talk

1. Why Functional Programming is intellectually interesting (particularly with Haskell)
2. The size and growth of the Tech sector in NYC
3. The size, growth and earnings of CUNY CS grads
4. The demographic bias of the Tech Industry relative to NYC Population
5. My thoughts on how helping to close this gap can benefit you and your employer
First computers were imperative by necessity

55 89 e5 53 83 ec 04 83 e4 f0 e8 31 00 00 00 89 c3 e8 2a 00
00 00 39 c3 74 10 8d b6 00 00 00 00 39 c3 7e 13 29 c3 39 c3
75 f6 89 1c 24 e8 6e 00 00 00 8b 5d fc c9 c3 29 d8 eb eb 90
A powerful programming language is more than just a means for instructing a computer to perform tasks. The language also serves as a framework within which we organize our ideas about processes.

— Hal Abelson —
Languages encourage patterns of thought

A programming language is like a natural, human language in that it favors certain metaphors, images, and ways of thinking.

— Seymour Papert —
There are dissenting opinions

The Value of Programming Paradigms

- To be taught in universities
- To ignite flamewars
- To characterize programming languages
- To inspire memes

SAY MONAD

ONE MORE TIME
Counterexamples of good languages

Confusing Syntax 2

```
1 A="Hello World"
2 if [ $A == $A ]; then
3     echo "Yes"
4 else
5     echo "No"
6 fi
```

- Outputs: “No”
- Is actually a syntax error!!
- $A must be wrapped in double quotes
Counterexamples of good languages

Confusing Syntax 2

```
A="Hello World"
if [ $A == $A ]; then
  echo "Yes"
else
  echo "No"
fi
```

- Outputs: “No”
- Is actually a syntax error!!
- $A must be wrapped in double quotes

- actually the slide is wrong
Counterexamples of good languages

Confusing Syntax 2

```bash
1  A="Hello World"
2  if [ $A == $A ]; then
3     echo "Yes"
4  else
5     echo "No"
6  fi
```

- Outputs: “No”
- Is actually a syntax error!!
- $A must be wrapped in double quotes

- actually the slide is wrong
- comparison should be `[[`
You can’t talk about poor language design and not mention JS

```javascript
console.log(0.1 + 0.2);
console.log(0.1 + 0.2 == 0.3);
```
You can’t talk about poor language design and not mention JS

```javascript
console.log(0.1 + 0.2);
console.log(0.1 + 0.2 == 0.3);
```

- 0.30000000000000004
- false
Comparisons can fail

```javascript
console.log(1 < 2 < 3);
console.log(3 > 2 > 1);
```
Comparisons can fail

```javascript
console.log(1 < 2 < 3);
console.log(3 > 2 > 1);
```

- true (1<2) -> true is implicitly coerced to 1 and 1<3
- false (3>2) -> true coerced to 1 and and 1>1 is false
var a = [1, 2, 3];
a[10] = 99;
console.log(a[10])
console.log(a[6])
Even assignment is perilous

```javascript
var a = [1, 2, 3];
a[10] = 99;
console.log(a[10])
console.log(a[6])
```

- 99
- [1, 2, 3, <7 empty items>, 99]

Why teaching functional programming to undergraduates at CUNY is important

Evan Misshula
Yet Haskell allows us to

Explore recursion both in functions and in data structures
Rewrite classic sort algorithms in breathtakingly simple form
Introduce students to algebraic ideas on functions so that they can master abstraction
Yet Haskell allows us to

- Explore recursion both in functions and in data structures
Yet Haskell allows us to

- Explore recursion both in functions and in data structures
- Rewrite classic sort algorithms in breathtakingly simple form
Yet Haskell allows us to

- Explore recursion both in functions and in data structures
- Rewrite classic sort algorithms in breathtakingly simple form
- Introduce students to algebraic ideas on functions so that they can master abstraction
Let’s find a problem that puts constraints on tuples

- Which right triangle that has integers for all sides and all sides equal to or smaller than 10 has a perimeter of 24?
Let’s find a problem that puts constraints on tuples

- Which right triangle that has integers for all sides and all sides equal to or smaller than 10 has a perimeter of 24?

- crack the problem like an egg
Let’s find a problem that puts constraints on tuples

- Which right triangle that has integers for all sides and all sides equal to or smaller than 10 has a perimeter of 24?

- crack the problem like an egg

- Opportunity to teach: solution by problem relaxation

Right triangle problem
Right triangle problem relax solution

Integer sides all < 10 and perimeter = 24

- generate all tuples of sides less than 10
Right triangle problem relax solution

Integer sides all < 10 and perimeter = 24

- generate all tuples of sides less than 10
- designate z as the hypotenuse (bigger than x and y)
Right triangle problem relax solution

Integer sides all < 10 and perimeter $= 24$

- generate all tuples of sides less than 10
- designate z as the hypotenuse (bigger than x and y)
- make $x^2 + y^2 = z^2$

```haskell
:set +m
length([(x,y,z) | x<-[1..10],y<-[1..10],
z<-[1..10],y<z,x<z,
(x^2 + y^2 == z^2)])
i==i
```

Prelude Control.Applicative| Prelude Control.Applicative| 4
Adding the perimeter constraint

Let’s add constraints

- the perimeter equal 24
- \(a + b + c = 24 \)

```haskell
:set +m

length([(x,y,z) | x<-[1..10],y<-[1..10],z<-[1..10],
y<z,
x+y+z==24,
(x^2 + y^2 == z^2)])
[(x,y,z) | x<-[1..10],y<-[1..10],z<-[1..10],y<z,
  x+y+z==24,
  (x^2 + y^2 == z^2)]
i==i
```
Haskell is statically typed

- Haskell allows students inquire about the type
 - We can see that type by using the ':t' command in the repl:

```haskell
:t 'a'
:t True
:t "HELLO!"
:t (True, 'a')
:t 4 == 5
1==1

'a' :: Char
True :: Bool
"HELLO!" :: [Char]
(True, 'a') :: (Bool, Char)
4 == 5 :: Bool
```
Haskell is statically typed

- Haskell allows students inquire about the type
- We can see that type by using the ':t' command in the repl:

:t 'a'
:t True
:t "HELLO!"
:t (True, 'a')
:t 4 == 5
1==1

'a' :: Char
True :: Bool
"HELLO!" :: [Char]
(True, 'a') :: (Bool, Char)
4 == 5 :: Bool
Decompose the typeclass

(==) :: Eq a => a -> a -> Bool

- Typeclass constraint
- The declaration we can read says:
Decompose the typeclass

\((==) :: \text{Eq} \ a \Rightarrow a \rightarrow a \rightarrow \text{Bool} \)

- Typeclass constraint
 - The declaration we can read says:

- The equality function takes two variables of the same type and returns a Bool
Decompose the typeclass

\[(==) :: \text{Eq} \ a \Rightarrow \ a \rightarrow \ a \rightarrow \ \text{Bool}\]

- Typeclass constraint
 - The declaration we can read says:

 The equality function takes two variables of the same type and returns a \text{Bool}

- The new part 'Eq a \Rightarrow' says:
 - The type must be part of \text{Eq} typeclass
 - This is called the class constraint
The `Eq` typeclass provides an interface for testing for equality

- `Eq` is used for types that support equality testing
 - Its members implement both:
 - `'=='`
 - `'/='`

5 == 5
5 /= 5
'a' == 'a'
"Ho Ha" == "Ho Ha"
3.4 == 3.4
 1 == 1

True
False
True
True
True
Introducing Ord typeclass

Ord is for types that have an ordering

- We can see the type of ‘>’ comparison
- We can see some functions which rely on being in the ord typeclass

:t (>)
"Abc"< "Zev"
compare "Abc" "Zev"
5 >= 2
compare 5 3
1==1

(>) :: Ord a => a -> a -> Bool
True
LT
True
GT
Ord has a connection with inference

Ord is important in statistics

- Ord can be used to explain: ordinal levels of measurement
Ord has a connection with inference

Ord is important in statistics

- Ord can be used to explain: ordinal levels of measurement
- Ord can also be used to introduce: utility curves
Introducing Show typeclass

Everything except function has been part of show

- It works like Java or Ruby’s toString methods
- Mostly we use it to examine a value

show 3
show 5.334
show True
1==1

3
5.334
True
Introducing Read typeclass

Read is the inverse of show

- It works reads a string and returns a type which supports the interface Read

Examples:
- `read "True" || False`
- `read "8.2" + 3.8`
- `read "5" - 2`
- `read "[1,2,3,4]" ++ [3]`
- `1==1`
- `True`
- `12.0`
- `3`
- `\[1,2,3,4,3\]`
Read is the inverse of show

- It works reads a string and returns a type which supports the interface `Read`
- You can use it to create Javascript like craziness
Introducing Read typeclass

Read is the inverse of show

- It works reads a string and returns a type which supports the interface Read

- You can use it to create Javascript like craziness

- But you have to work at it

```
read "True" || False
read "8.2" + 3.8
read "5" - 2
read "[1,2,3,4]" ++ [3]
1==1
```

True
12.0
3
Limits to the type inference system

Let’s look at a type error

read 4
1==1

<interactive>:2327:6: error:
 • Could not deduce (Num String) arising from the literal ‘4’
 from the context: Read a
 bound by the inferred type of it :: Read a => a
 at <interactive>:2327:1-6
 • In the first argument of ‘read’, namely ‘4’
 In the expression: read 4
 In an equation for ‘it’: it = read 4

• GHCI is saying it does not know what type to return
 • Do you want an Float or an Integer?
We can specify a type

- We just add ‘::<Type>’ and read will work

```
read "5" :: Int
read "5" :: Float
(read "5" :: Int) * 4
read "[1,2,3,4]" :: [Int]
read "(3,'a')" :: (Int, Char)
1==1
```

5
5.0
20
[1,2,3,4]
(3,'a')
Enum type class

Sequentially ordered types

- Being *sequentially ordered* means that they can be counted in order.
- This property is also called being *enumerable*.
- We can use them in list ranges:
 - they each have a predecessor which you can get with 'pred'
 - they each have a successor which you can get with 'succ'

```haskell
['a'..'e']
[LT .. GT]
[3..7]
succ 'B'
1==1

abcde

[LT,EQ,GT]
[3,4,5,6,7]
'S'
```
Bounded Type class

Bounded type class has concrete types
- with maximum and minimum elements
 - minBound and maxBound are functions with polymorphic type
 - \((\text{Bounded } a) \Rightarrow a\)

```haskell
minBound :: Int
maxBound :: Char
maxBound :: Bool
minBound :: Bool
i==i

-9223372036854775808
'\1114111'
True
False
```
Numeric Types

Numeric types can be operated on mathematically

Let’s look at this type

:t (*)
(5 :: Int) * (6 :: Integer)
(5 :: Int) * 6
i==i

(*) :: Num a => a -> a -> a

<interactive>:2350:15: error:
 • Couldn’t match expected type ‘Int’ with actual type ‘Integer’
 • In the second argument of ‘(*)’, namely ‘(6 :: Integer)’
In the expression: (5 :: Int) * (6 :: Integer)
In an equation for ‘it’: it = (5 :: Int) * (6 :: Integer)
The Integral typeclass only includes Integer and Int

The Floating typeclass only includes floats and double

:t fromIntegral
fromIntegral (length [1,2,3,4]) + 3.2
i==i

fromIntegral :: (Num b, Integral a) => a -> b
7.2
Curried Functions

Every function in haskell only takes one argument

- But what about 'max' or min?
- We actually apply parameters to functions one at time
 - These are called "curried" functions
 - This is after Haskell Curry
 \[
 \text{max} \quad (\text{Ord} \ a) \Rightarrow a \rightarrow a \rightarrow a
 \]
 \[
 \text{max} \quad (\text{Ord} \ a) \Rightarrow a \rightarrow (a \rightarrow a)
 \]
- If we call a function with too few parameters we get back a partially applied function

\[
\text{set} \ +m
\]

\[
\text{multThree :: (Num} \ a) \Rightarrow a \rightarrow a \rightarrow a \rightarrow a
\]
\[
\text{multThree x y z = x * y * z}
\]
\[
\text{multThree 3 5 9 == ((multThree 3) 5) 9}
\]
\[
i==1
\]
Here is a curried comparison

- These are the same because 'x' is on both sides of the equation

```haskell
-- compareWithHundred :: (Num a, Ord a, Show a) => a -> Ordering
compareWithHundred x = compare 100 x

-- compareWithHundred1 :: (Num a, Ord a, Show a) => a -> Ordering
compareWithHundred1 = compare 100
```
Example partial application

Let’s look at an infix function

- simply surround the function with parentheses and only supply one of the parameters
- this is called 'sectioning'

```haskell
-- divideByTen :: (Floating a) => a -> a -> a
divideByTen = (/10)
```
partial application of a string function

String functions can be partially applied too

- this is written in point free style
- it is also sectioned

```haskell
-- isUpperAlphanum :: Char -> Bool
isUpperAlphanum = (\c -> elem c ['A'..'Z'])
```
Returned functions

Functions can return functions

- take a function and apply it twice

```haskell
-- applyTwice :: (a -> a) -> a -> a
applyTwice f x = f (f x)
```
ZipWith

We are going to implement ZipWith

- It joins two lists and performs a function on the corresponding elements

```haskell
-- zipWith' :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith' _ [] _ = []
zipWith' _ _ [] = []
zipWith' f (x:xs) (y:ys) = f x y : zipWith' f xs ys
```
flip changes the order of the arguments

```haskell
-- flip' :: (a -> b -> c) -> (b -> a -> c)
flip' f = g
    where g x y = f y x

-- flip'' :: (a -> b -> c) -> b -> a -> c
flip'' f y x = f x y
```
Maps and Filters

Map

- map takes a function applies the function to each element of a list

```haskell
-- map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
```
'filter' takes a function called a predicate and a list of any type.
- The predicate takes an element of the list and returns a Bool.
- The filter returns elements for which the predicate is True.

\[
\text{filter} :: (a \to \text{Bool}) \to [a] \to [a]
\]

\[
\text{filter} _ \ [] = []
\]

\[
\text{filter} \ p \ (x:xs)
\begin{align*}
| \quad \text{p} \ x &= x : \text{filter} \ p \ xs \\
| \quad \text{otherwise} &= \text{filter} \ p \ xs
\end{align*}
\]
Lambdas

Lambdas are anonymous functions
- These are unnamed functions
- They are passed as parameters to other functions
- They work like composition in math
- They are called 'lambdas' because of the 'lambda calculus'
Church and Turing

Alan Turing
(1912 – 1954)

Alonzo Church
(1903-1995)

Turing Machine
Two mathematical ways to ask questions about “computability”

Lambda calculus

Functional Programming

Computability
Lambda Calculus is a formal system for computation

- it is equivalent to calculation by Turing Machine
- invented by Alonzo Church in the 1930s
- Church was Turing's thesis advisor
 - a function is denoted by the greek letter λ
 - a function $f(x)$ that maps $x \to f(x)$ is:
 - $\lambda x. y$
Example of a lambda

We can pass a lambda to ZipWith

- a lambda function in Haskell starts with `'\'`
- can’t define several parameters for one parameter

```haskell
zipWith (\a b -> (a * 30 + 3) / b) [5,4,3,2,1] [1,2,3,4,5]
1==1
```
specification

-- quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) =
 let smallerSorted = quicksort [a | a <- xs, a <= x]
biggerSorted = quicksort [a | a <- xs, a > x]
in smallerSorted ++ [x] ++ biggerSorted
1==1
Folds

Folds encapsulate several functions with \((x:xs)\) patterns

- they reduce a list to a single value
- \('foldl'\) is the left fold function

\[
\begin{align*}
\text{sum'} & :: (\text{Num } a) \Rightarrow [a] \rightarrow a \\
\text{sum'} \; xs = \text{foldl} (\lambda \text{acc } x \rightarrow \text{acc } + x) \; 0 \; xs
\end{align*}
\]

\[
\begin{align*}
\text{sum''} & :: (\text{Num } a) \Rightarrow [a] \rightarrow a \\
\text{sum''} = \text{foldl} (+) \; 0
\end{align*}
\]

1==1
Function application with $\\$

- "$" is called the *function application*
- changes to right association
- keeps us from writing parentheses

```
map ($ 3) [(4+), (10*), (^2), sqrt]
1==1

[7.0, 30.0, 9.0, 1.7320508075688772]*** Exception: <interactive>:2394:1-29: Non-exhaustive patterns in function map
```
Function composition is just like math

- In math \(f \circ g(x) = f(g(x)) \)
- Let’s look at Haskell function
- \(g \) takes \(a \to b \)
- \(f \) takes \(b \to c \)
Function composition

Function composition is just like math

- In math \(f \cdot g(x) = f(g(x)) \)
- Let’s look at Haskell function
 - \(g \) takes \(a \to b \)
 - \(f \) takes \(b \to c \)
 - so the composition take \(f \cdot g \) takes \(a \to c \)

\[
(\cdot) :: (b \to c) \to (a \to b) \to a \to c
\]

\[
f \cdot g = \lambda x \to f(g\ x)
\]
Function composition examples

- with a \(\lambda \)
- with point free notation

```haskell
map (\x -> negate (abs x)) [5,-3,-6,7,-3,2,-19,24]
map (negate . abs) [5,-3,-6,7,-3,2,-19,24]
```

\([-5,-3,-6,-7,-3,-2,-19,-24***\] Exception: <interactive>:2394:1-29: Non-exhaustive patterns in function map
Polymorphism on a higher level

- Types are not part of a hierarchy
- We can think about how they should act
 - then connect them with typeclasses
Functors defined

Definition (definition)

A functor is a typeclass for all the things that can be mapped over

Haskell syntax definition

```haskell
class Functor f where
  fmap :: (a -> b) -> f a -> f b
```

Why teaching functional programming to undergraduates at CUNY is important

2018-03-28 47 / 84
A functor is a typeclass for all the things that can be mapped over

```
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```
Analogy with other typeclasses

Typeclasses define functions

- **Eq** defines concrete types that are equatable
 - functions (‘=’) and (’/=’)
- **Ord** defines concrete types that ’orderable’
 - implements the ’compare’ function
- **Enum** defines concrete types that enumerable
 - defines ’..’ a range
Example (List Functor Examples)

- map :: (a -> b) -> [a] -> [b]
- instance Functor [] where
 - fmap = map
List Functor in the repl

:t map
fmap (*2) [1..3]
map (*2) [1..3]
i==i

map :: (t -> a) -> [t] -> [a]
[2,4,6]
[2,4,6]

*** Exception: <interactive>:2394:1-29: Non-exhaustive patterns in function map
Example (Maybe Functor Examples)

type myMaybe a = Nothing | Just a

instance Functor myMaybe where
 fmap f (Just x) = Just (f x)
 fmap f Nothing = Nothing
Maybe Functor code in the repl

:t fmap

fmap ("HEY GUYS IM INSIDE THE JUST") (Just "Something serious.

fmap ("HEY GUYS IM INSIDE THE JUST") Nothing

fmap (*2) (Just 200)

fmap (*2) Nothing

fmap :: Functor f => (a -> b) -> f a -> f b

Just "Something serious. HEY GUYS IM INSIDE THE JUST"

Nothing

Just 400

Nothing
Functor Law intuition

If functors mean that something can be mapped over...

- then calling 'fmap' on a functor should
 - map a function over the functor
Functor Law intuition

If functors mean that something can be mapped over...

- then calling 'fmap' on a functor should
 - map a function over the functor

- Nothing else
The First Functor Laws

Definition (The First Functor Law) states that if we map the identity (id) function over a functor, we get the functor

- \(\text{fmap id} = \text{id} \)
Identity in the Repl

Identity functions in the repl

```haskell
fmap id (Just 3)
id (Just 3)
fmap id [1..5]
id [1..5]
fmap id []
fmap id Nothing
1==1

Just 3
Just 3
[1,2,3,4,5]
[1,2,3,4,5]
[]
Nothing
```
The Second Functor Law

Definition (The Second Functor Law says)

The Second Functor Law says that composing two functions and then mapping the composed function over a functor is the same as first mapping one function over the functor and then mapping the other one.

- \(\text{fmap} \ (f \cdot g) = \text{fmap} \ f \ . \ \text{fmap} \ g \)
- \(\text{fmap} \ (f \cdot g) \ F = \text{fmap} \ f \ (\text{fmap} \ g \ F) \)
Composition functions in the repl

- `fmap ((+1).(*2)) (Just 3)
- `fmap (+1) (fmap (*2) (Just 3))
- `fmap ((+1).(*2)) [1..5]
- `fmap (+1) (fmap (*2) [1..5])
- `1==1

- `Just 7
- `Just 7
- `[3,5,7,9,11]
- `[3,5,7,9,11]`
What if we map a multi-parameter function over a functor?

Look at the type signature

```
a = fmap (*) [1..4]
:t a
fmap (\f -> f 9) a
1==1
```

```
a :: (Num a, Enum a) => [a -> a]
[9,18,27,36]
```
Let’s take a Just (3 *) and map
and map it over Just 5

class (Functor f) => Applicative f where
 pure :: a -> f a;
 (<*>): f (a -> b) -> f a -> f b

Let’s look at the Applicative for Maybe

```hs
:set +m
:

instance Applicative MyMaybe where
    pure = Just
    Nothing <*> _ = Nothing
    (Just f) <*> something = fmap f something

:}
```
Using the Maybe Applicative

-- :add Control.Applicative
Just (+3) <*> Just 9
pure (*2) <*> Just 10
pure (+3) <*> Just 9
Just ("!!") <*> Just "Go now"
Nothing <*> Just "woot"
1==1

<interactive>:2476:1: error:
 • Could not deduce (Applicative Maybe) arising from a use of '<*>' from the context: Num b
 bound by the inferred type of it :: Num b => Maybe b
 at <interactive>:2476:1-20
 • In the expression: Just (+ 3) <*> Just 9
 In an equation for ‘it’: it = Just (+ 3) <*> Just 9
Fmap as an infix operator

Control.Applicative exports a function called `<$>`

which is `fmap` as an infix operator

```
(<$>) :: (Functor f) => (a -> b) -> f a -> f b
f <$> x = fmap f x
```
Compare Applicatives in the repl

Infix fmap in the repl

(++) <$> Just "John " <*> Just "Travolta"
(++) "John " "Travolta"
1==1

<interactive>:2486:1: error:
 • No instance for (Applicative Maybe) arising from a use of '<*>'
 • In the expression: (++) <$> Just "John " <*> Just "Travolta"
 In an equation for ‘it’:
 it = (++) <$> Just "John " <*> Just "Travolta"
John Travolta
Lists are Applicative Functors

Definition (Definition of the Applicative for a list)

- Literally a Cartesian product of functions and list values

```haskell
:set +m
:
instance Applicative [] where
    pure x = [x]
    fs <*> xs = [f x | f <- fs, x<- xs]
:}
```
Applicative Functors of lists in the repl

\[
\begin{align*}
\[(\ast 0),(+100),(\sim 2)\] & \leftrightarrow [1..4] \\
\[(+),(*)\] & \leftrightarrow [1,2] \leftrightarrow [3,4] \\
\[(++)\] & \leftrightarrow ["ha","heh","hmm"] \leftrightarrow ["?","!","."]
\end{align*}
\]

1==1

\[
\begin{align*}
[0,0,0,0,101,102,103,104,1,4,9,16] \\
[4,5,5,6,3,4,6,8] \\
["ha?","ha!","ha.","heh?","heh!","heh.","hmm?","hmm!","hmm."]
\end{align*}
\]
Let's see how the IO Applicative is implemented:

```haskell
:set +m
:
instance Applicative IO where
  pure = return
  a <*> b = do
    f <- a
    x <- b
    return (f x)
:}
```
Two ways to concatenate two lines of user input string

- Imperative code

```haskell
:set +m
:{
myAction :: IO String
myAction = do
  a <- getLine
  b <- getLine
  return $ a ++ b
:}
```

- Applicative code

```haskell
:set +m
:{
myAction :: IO String
myAction = (++)<$> getLine<*> getLine
:}
```
The first Applicative Functor Law

Theorem (The first Applicative Functor Law)

\[pure \, f \, <*> \, x = \text{fmap} \, f \, x \]
Some lessons we’ve skipped

Defining types

- `data` will define a new algebraic type
- `type` creates a type synonym
- `newtype` creates new types from old types
Applicative Functor in two ways

function left, each argument right

:m Control.Applicative
[(+1),(*100),(*5)] <*> [1..3]
1==1

[2,3,4,100,200,300,5,10,15]

function left, every argument right

:set +m
:
instance Applicative ZipList where
pure x = ZipList (repeat x)
ZipList fs <*> ZipList xs = ZipList (zipWith ( x -> f x) fs xs)
:
getZipList $ ZipList [(+1),(*100),(*5)] <*> ZipList [1,2,3]
-- getZipList $
-- ZipList [(+1),(*100),(*5)]
-- <*> ZipList [1,2,3]
1==1

The newtype keyword

'newtype' takes one type and wrap it
- to present it as another type

newtype ZipList a = ZipList {getZipList :: [a]}
- data can have multiple value constructors
type vs. newtype vs. data examples

'data' to make new types

- Here are additive and multiplicative types with multiple constructors

```haskell
data Profession = Fighter | Archer | Wizard
data Species = Human | Elf | Orc | Goblin
data PlayerCharacter = PlayerCharacter Species Profession
```
Using newtype to drive typeclass properties

```haskell
newtype CharList = CharList {getCharList :: [Char]} deriving(Eq,Show)
CharList "this will be shown!"
CharList "benny" == CharList "benny"
CharList "benny" == CharList "oisters"
1==1
CharList {getCharList = "this will be shown!"}
True
False
```
Monoid Definition

Definition (Monoid definition)

A data type, category or set is a monoid if it has a binary operation \(\bullet \) which is associative and has an identity.

- \(\forall a, b, c \in S, (a \bullet b) \bullet c = a \bullet (b \bullet c) \)
- \(e \bullet a = a \bullet e = a \)

:set +m

:{
class Monoid m where
 mempty :: m
 mappend :: m -> m -> m
 mconcat :: [m] -> m
 mconcat = foldr mappend mempty
:
}
Monoid functions defined

Defining the monoid functions

- 'mempty' is just the identity function
- mappend is the binary function
 - it doesn’t just append
- mconcat reduces a list of monoid values and reduces them to one by applying mappend
Theorem (The Monoid Laws are just the definition in Haskell)

- \(\text{mappend} \ \text{mempty} \ x = x \)
- \(\text{mappend} \ x \ \text{mempty} = x \)
- \(\text{mappend} \ (\text{mappend} \ x \ y) \ z = \text{mappend} \ x \ (\text{mappend} \ y \ z) \)
Monoid examples

Example (List is a monoid)
- [] with (++) is a monoid
 - id = ""
- Natural numbers with (*) is a monoid
 - id = 1
- Natural numbers with (+) is a monoid
 - id = 0
Why is all of this important to you

- BLS Statistics
- 2015 median salary is $100,690
- Number of jobs: 1,114,000
- Job growth: 17% (much faster than average)
The Technology Sector in New York City 4/2018

New York State had the third-largest tech sector in the nation in 2016.

Employment in NYC’s tech sector increased by 57% between 2010 and 2016 (46,900 jobs), 3x faster than the rest of the private sector.

The average salary increased 3x faster than the rest of the City’s private sector to reach a record $147,300 by 2016.
In New York City, 44.6% of the population is white, 25.1% is black, and 11.8% are of Asian descent. Hispanics of any race represent about 27.5% percent of New York City’s population.

- US Census 2018
NYC Tech Sector does not reflect our diversity

[B]lacks and Latinos constitute 25.1 percent and 27.5 percent of the population, respectively, but only 9 percent and 11 percent, respectively, are employed in the tech sector.

City Limits: Why is NYC Tech so White?
References

- CUNY Student Experience 2016
- NYC Tech is 62% White, 60% male
- NYC Tech Profile
- Why NYC’s Growing Tech Sector is so White
- Numbers say New York’s tech boom is real
- Will Silicon Alley Be the Next Silicon Valley?
- The Technology Sector in New York City
- NYC Population
- CUNY 2x Initiative
- Peter Drake’s Prog Lang Course Materials
- http://learnyouahaskell.com/